Fine Selmer groups of congruent <i>p</i>-adic Galois representations

نویسندگان

چکیده

We compare the Pontryagin duals of fine Selmer groups two congruent $p$-adic Galois representations over admissible pro-$p$, Lie extensions $K_\infty$ number fields $K$. prove that in several natural settings $\pi$-primary submodules are pseudo-isomorphic Iwasawa algebra; if coranks not equal, then we can still inequalities between $\mu$-invariants. In special case a $\mathbb{Z}_p$-extension $K_\infty/K$, also $\lambda$-invariants groups, even situations where $\mu$-invariants non-zero. Finally, similar results for certain abelian non-$p$-extensions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformations of Hilbert Modular Galois Representations and Adjoint Selmer Groups

We prove the vanishing of the geometric Bloch–Kato Selmer group for the adjoint representation of a Galois representation associated to a Hilbert modular form under mild assumptions on the residual image. In particular, we do not assume the residual image satisfies the Taylor–Wiles hypothesis. Using this, we deduce that the localization and completion of the universal deformation ring for the r...

متن کامل

Deformations of Polarized Automorphic Galois Representations and Adjoint Selmer Groups

We prove the vanishing of the geometric Bloch–Kato Selmer group for the adjoint representation of a Galois representation associated to regular algebraic polarized cuspidal automorphic representations under an assumption on the residual image. Using this, we deduce that the localization and completion of a certain universal deformation ring for the residual representation at the characteristic ...

متن کامل

On the Galois Structure of Selmer Groups

Let A be an abelian variety defined over a number field k and F a finite Galois extension of k. Let p be a prime number. Then under certain not-too-stringent conditions on A and F we investigate the explicit Galois structure of the p-primary Selmer group of A over F . We also use the results so obtained to derive new bounds on the growth of the Selmer rank of A over extensions of k.

متن کامل

TORSION p-ADIC GALOIS REPRESENTATIONS

Let p be a prime, K a finite extension of Qp and T a finite free Zp-representation of Gal(K̄/K). We prove that T ⊗Zp Qp is semi-stable (resp., crystalline) with Hodge-Tate weights in {0, . . . , r} if and only if for all n, T/pnT is torsion semi-stable (resp., crystalline) with Hodge-Tate weights in {0, . . . , r}. Résumé. (Représentations galoisiennnes p-adiques de torsion) Soient p un nombre p...

متن کامل

Refined Iwasawa theory for p-adic representations and the structure of Selmer groups

In this paper, we develop the idea in [16] to obtain finer results on the structure of Selmer modules for p-adic representations than the usual main conjecture in Iwasawa theory. We determine the higher Fitting ideals of the Selmer modules under several assumptions. Especially, we describe the structure of the classical Selmer group of an elliptic curve over Q, using the ideals defined from mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian mathematical bulletin

سال: 2021

ISSN: ['1496-4287', '0008-4395']

DOI: https://doi.org/10.4153/s0008439521000849